Causal Evidence on State Effects from a Geographic Regression Discontinuity Design
 Markus Neumann

Department of Political Science - Penn State University

Overview

> There is a well-established, but unproven notion in state politics that states affect the opinions of their citizens.
Some scholars have theorized this effect to be the result of 'culture' (Erikson et al. 1993)
There is little doubt that there is a correlation, but a causal effect requires a greater burden of proof

Geographic Regression Discontinuity Design

- Assignment to treatment by the state border

Differences between the citizens on the two sides of the border assumed to be as-if random

Distance to the State Border

Given the radius r of the earth (assumed to be $6,378,137 \mathrm{~m}$), the latitude ϕ_{1}, ϕ_{2} and longitude λ_{1}, λ_{2} of two points and the Haversine function:

$$
\operatorname{hav}(\theta)=\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{1-\cos (\theta)}{2}
$$

the Haversine distance d between those points is given by:

$$
\gamma=\operatorname{hav}\left(\phi_{2}-\phi_{1}\right)+\cos \left(\phi_{1}\right) * \cos \left(\phi_{2}\right) * \operatorname{hav}\left(\lambda_{2}-\lambda_{1}\right)
$$

$$
d=2 r * \arcsin (\sqrt{\gamma})
$$

This function is then applied to geo-coded data point and every point on the shared state border, determining the shortest distance.

Public Opinion in Geo-Coded Twitter Data

- Geo-coded (latitude/longitude) tweets from the 'firehose'
- Dictionary-based sentiment analysis on tweets mentioning Donald Trump

Figure: Map of North Carolina and South Carolina, with tweets superimposed, colored by thei sentiment with respect to Donald Trump.

Results

Figure: Sentiment of tweets in North Carolina and South Carolina, relative to their distance to the border. In a regression discontinuity design, the expected result is a sharp change around the cutoff (not present here).

Churches in the States

Figure: Geographic locations (latitude/longitude) of churches in the United States

Figure: Church density in Alabama and Florida, relative to the border. In a regression
discontinuity design, the expected result is a sharp change around the cutoff, which does occur in this case

Gun Stores in the States

Figure: Geographic locations (latitude/longitude of the geographic midpoint of the respective zip code) of gun stores in the United States.

Figure: Gun stores in Massachusetts and Vermont per person in each zip code, relative to its distance to the border. In a regression discontinuity design, the expected result is a sharp change around the cutoff, which does occur in this case

Conclusion

For public opinion, no real regression discontinuity is visible at the border both in the comparison shown here, as well as in all other states
The sentiment analysis could be improved by doing stance detection with a neural network
There is a clear causal effect visible for churches - both in the example here, as well as in many other states
There is currently no control for population. This could be improved by either using zip codes instead of exact locations or, alternatively, spatial densities
For gun stores, the example shown here demonstrates a causal state effect. In many other cases, there is still a discontinuity between the point estimates but not always the confidence intervals.
The use of zip codes makes controlling for population easier. The downside is a lack of precision. Street addresses of gun stores could be geo-coded.

Conclusion: causal state effect on culture, but not opinion

